

Introduction

[image: _images/Dendrify.svg]
 [https://pypi.python.org/pypi/Dendrify][image: Documentation Status]
 [https://dendrify.readthedocs.io/en/stable/?badge=stable][image: Contributor Covenant]
Although neuronal dendrites greatly influence how single neurons process incoming
information, their role in network-level functions remain largely unexplored.
Current SNNs are usually quite simplistic, overlooking essential dendritic
properties. Conversely, circuit models with morphologically detailed neuron
models are computationally costly, thus impractical for large-network
simulations.

To bridge the gap between these two, we introduce Dendrify, a free,
open-source Python package compatible with the
Brian 2 simulator [https://brian2.readthedocs.io/en/stable/]. Dendrify,
through simple commands, automatically generates reduced compartmental neuron
models with simplified yet biologically relevant dendritic and synaptic
integrative properties. Such models strike a good balance between flexibility,
performance, and biological accuracy, allowing us to explore dendritic
contributions to network-level functions.

[image: _images/intro.png]
[image: _images/intro_dark.png]

Tip

If you use Dendrify for your published research, we kindly ask you to cite our
article:
Introducing the Dendrify framework for incorporating dendrites to spiking neural networks
M Pagkalos, S Chavlis, P Poirazi
DOI: https://doi.org/10.1038/s41467-022-35747-8

 Installation

Installation

Dendrify is included in the Python package index: https://pypi.org/project/dendrify.
The easiest way to install it is through pip, using the command:

pip install dendrify

Dependencies

	Brian 2 [https://brian2.readthedocs.io/en/stable/index.html] (required) is
a simulator for spiking neural networks. It is written in Python and is available
on almost all platforms. Brian is designed to be easy to learn and use, highly
flexible and easily extensible.

	How to install Brian 2 [https://brian2.readthedocs.io/en/stable/introduction/install.html]

	Netwokx [https://networkx.org/] (optional) is a Python package for the creation,
manipulation, and study of the structure, dynamics, and functions of complex
networks. If you wish Dendrify to have access to certain experimental model
visualization features, you can install it using the command:

pip install networkx

GPU support

Dendrify is compatible with Brian2CUDA [https://brian2cuda.readthedocs.io/],
a Python package for simulating spiking neural networks on graphics processing
units (GPUs). Brian2CUDA is an extension of Brian2 that uses the code generation
system of the latter to generate simulation code in C++/CUDA, which is then executed
on NVIDIA GPUs.

	How to install Brian2CUDA [https://brian2cuda.readthedocs.io/en/latest/introduction/install.html]

 Tutorial

Tutorial

Coming soon

[image: ../_images/under-construction.png]

 Examples

Examples

Bellow you will find two model examples adopted from the Dendrify paper [https://doi.org/10.1038/s41467-022-35747-8].

	Example 1 | A basic compartmental model with passive dendrites

	Example 2 | A reduced compartmental model capturing active dendritic properties

Tip

By clicking the “Open in Colab” button located under each example, you
can run in your browser (without locally installing Dendrify or Brian) an
interactive Jupyter notebook that reproduces the respective neuron models and
simulation results.

Example 1 | A basic compartmental model with passive dendrites.

In this example we show that even rudimentary models can reproduce essentia
neuronal properties such as the electrical segmentation caused by dendrites
This allows multiple integration sites to coexist within a neuron and dendrite
to operate semi-autonomously from the soma, while greatly affecting neuronal output.

[image: ../_images/Fig2.png]
a) Schematic illustration of a compartmental model consisting of a soma
(spiking unit) and two dendrites (passive integrators). The apical dendrite
can integrate excitatory synapses comprising AMPA and NMDA currents. b)
Membrane voltage responses to current injections of the same amplitude are
applied individually to each compartment. Notice the electrical segregation
caused by the resistance between the three neuronal compartments. c Somatic
responses to a varying number of simultaneous synaptic inputs (5–35 synapses).
Left: control EPSPs, Right: EPSPs in the presence of NMDA blockers. d)
Input-output function of the apical dendrite as recorded at the soma. The
dotted line represents a linear function. Notice the shift from supralinear
to the sublinear mode when NMDARs are blocked.

[image: Open in Colab]
 [https://colab.research.google.com/github/Poirazi-Lab/dendrify/blob/main/paper_figures/Fig2_notebook.ipynb]

Example 2: A reduced compartmental model capturing active dendritic properties.

In this example we show that reduced compartmental I&F models, equipped with
event-driven dendritic spiking mechanisms can faithfully reproduce a broad range
of dendritic properties such as: i) Supralinear input integration, ii) dendrite-specific
spiking threshold, iii) distance-dependent filtering, iv) backpropagation
of somatic spikes.

[image: ../_images/Fig3.png]
a) Schematic illustration of a compartmental model consisting of a soma
(leaky I&F) and three dendritic segments (trunk, proximal, distal) equipped
with Na+ VGICs. The distal and proximal segments can also receive AMPA
and NMDA synapses. b–d) Rheobase current injections (5 ms square pulses) for
dSpike generation were applied individually to each dendritic segment. Shaded
areas: location of current injection and dSpike initiation. Top: stimulation
protocol showing the current threshold for a single dSpike (rheobase current).
e) First temporal derivative of dendritic (left) and somatic (right) voltage
traces from panels (b–d). f) Input–output function of the distal (left) and
proximal (right) segment as recorded from the corresponding dendritic locations.
We also indicate the number of quasi-simultaneously activated synapses (ISI = 0.1 ms)
needed to elicit a single dSpike in each case. OFF: deactivation of Na+ dSpikes.
Dashed lines: linear input–output relationship. g) Left: Backpropagating dSpikes
are generated in response to somatic current injections. The short-amplitude
spikelets detected in the distal branch are subthreshold voltage responses for
dSpike initiation. Right: Magnified and superimposed voltage traces (top) from
the dashed box (left). Bottom: dendritic voltage-activated currents responsible
for dSpikes generation in each dendritic segment.

[image: Open in Colab]
 [https://colab.research.google.com/github/Poirazi-Lab/dendrify/blob/main/paper_figures/Fig3_notebook.ipynb]

 Classes

Classes

	Compartment

	Soma

	Dendrite

	NeuronModel

	EphysProperties

 Compartment

Compartment

	
class dendrify.compartment.Compartment(name, model='passive', **kwargs)

	Bases: object

A class that automatically generates and handles all differential
equations and parameters needed to describe a single compartment and
any currents (synaptic, dendritic, noise) passing through it.

	Parameters:

	
	name (str) – A unique name used to tag compartment-specific equations and parameters.
It is also used to distinguish the various compartments belonging to the
same NeuronModel.

	model (str, optional) – A keyword for accessing Dendrify’s library models. Custom models can
also be provided but they should be in the same formattable structure as
the library models. Available options: 'passive' (default),
'adaptiveIF', 'leakyIF', 'adex'.

	kwargs (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Kwargs are used to specify important electrophysiological properties,
such as the specific capacitance or resistance. For more information
see: EphysProperties.

Examples

>>> # specifying equations only:
>>> compX = Compartment('nameX', 'leakyIF')
>>> # specifying equations and ephys properties:
>>> compY = Compartment('nameY', 'adaptiveIF', length=100*um, diameter=1*um,
>>> cm=1*uF/(cm**2), gl=50*uS/(cm**2))

Attributes:

	area

	A compartment's surface area (open cylinder) based on its length and diameter.

	capacitance

	A compartment's absolute capacitance based on its specific capacitance (cm) and surface area.

	equations

	All differential equations that have been generated for a single compartment.

	g_leakage

	A compartment's absolute leakage conductance based on its specific leakage conductance (gl) and surface area.

	parameters

	All parameters that have been generated for a single compartment.

Methods:

	connect

	Allows the connection (electrical coupling) of two compartments.

	noise

	Adds a stochastic noise current.

	synapse

	Adds synaptic currents equations and parameters.

	
property area

	A compartment’s surface area (open cylinder) based on its length
and diameter.

	Return type:

	Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]

	
property capacitance

	A compartment’s absolute capacitance based on its specific capacitance
(cm) and surface area.

	Return type:

	Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]

	
connect(other, g='half_cylinders')

	Allows the connection (electrical coupling) of two compartments.

	Parameters:

	
	other (Compartment) – Another compartment.

	g (str or Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – The coupling conductance. It can be set explicitly or calculated
automatically (provided all necessary parameters exist).
Available options: 'half_cylinders' (default),
'cylinder_<compartment name>'.

Warning

The automatic approaches require that both compartments to be connected
have specified length, diameter and axial resistance.

Examples

>>> compX, compY = Compartment('x', **kwargs), Compartment('y', **kwargs)
>>> # explicit approach:
>>> compX.connect(compY, g=10*nS)
>>> # half cylinders (default):
>>> compX.connect(compY)
>>> # cylinder of one compartment:
>>> compX.connect(compY, g='cylinder_x')

	
property equations

	All differential equations that have been generated for a single
compartment.

	Return type:

	str

	
property g_leakage

	A compartment’s absolute leakage conductance based on its specific
leakage conductance (gl) and surface area.

	Return type:

	Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]

	
noise(tau=20. * msecond, sigma=3. * pamp, mean=0. * amp)

	Adds a stochastic noise current. For more information see the Noise
section: of Models and neuron groups [https://brian2.readthedocs.io/en/stable/user/models.html]

	Parameters:

	
	tau (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Time constant of the Gaussian noise, by default 20*ms

	sigma (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Standard deviation of the Gaussian noise, by default 3*pA

	mean (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Mean of the Gaussian noise, by default 0*pA

	
property parameters

	All parameters that have been generated for a single compartment.

	Return type:

	dict

	
synapse(channel=None, pre=None, g=None, t_rise=None, t_decay=None, scale_g=False)

	Adds synaptic currents equations and parameters. When only the decay
time constant t_decay is provided, the synaptic model assumes an
instantaneous rise of the synaptic conductance followed by an exponential
decay. When both the rise t_rise and decay t_decay constants are
provided, synapses are modelled as a sum of two exponentials. For more
information see:
Modeling Synapses by Arnd Roth & Mark C. W. van Rossum [https://doi.org/10.7551/mitpress/9780262013277.003.0007]

	Parameters:

	
	channel (str) – Synaptic channel type. Available options: 'AMPA', 'NMDA',
'GABA', by default None

	pre (str) – A unique name to distinguish synapses of the same type coming from
different input sources, by default None

	g (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – Maximum synaptic conductance, by default None

	t_rise (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – Rise time constant, by default None

	t_decay (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – Decay time constant, by default None

	scale_g (bool, optional) – Option to add a normalization factor to scale the maximum
conductance at 1 when synapses are modelled as a difference of
exponentials (have both rise and decay kinetics), by default
False.

Examples

>>> comp = Compartment('comp')
>>> # adding an AMPA synapse with instant rise & exponential decay:
>>> comp.synapse('AMPA', g=1*nS, t_decay=5*ms, pre='X')
>>> # same channel, different conductance & source:
>>> comp.synapse('AMPA', g=2*nS, t_decay=5*ms, pre='Y')
>>> # different channel with both rise & decay kinetics:
>>> comp.synapse('NMDA', g=1*nS, t_rise=5*ms, t_decay=50*ms, pre='X')

 Soma

Soma

	
class dendrify.compartment.Soma(name, model='leakyIF', **kwargs)

	Bases: Compartment

A class that automatically generates and handles all differential equations
and parameters needed to describe a somatic compartment and any currents
(synaptic, dendritic, noise) passing through it.

See also

Soma acts as a wrapper for Compartment with slight changes to account for
certain somatic properties. For a full list of its methods and attributes,
please see: Compartment.

	Parameters:

	
	name (str) – A unique name used to tag compartment-specific equations and parameters.
It is also used to distinguish the various compartments belonging to the
same NeuronModel.

	model (str, optional) – A keyword for accessing Dendrify’s library models. Custom models can
also be provided but they should be in the same formattable structure as
the library models. Available options: 'leakyIF' (default),
'adaptiveIF', 'adex'.

	kwargs (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Kwargs are used to specify important electrophysiological properties,
such as the specific capacitance or resistance. For more information
see: EphysProperties.

Examples

>>> # specifying equations only:
>>> somaX = Soma('nameX', 'leakyIF')
>>> # specifying equations and ephys properties:
>>> somaY = Soma('nameY', 'adaptiveIF', length=100*um, diameter=1*um,
>>> cm=1*uF/(cm**2), gl=50*uS/(cm**2))

 Dendrite

Dendrite

	
class dendrify.compartment.Dendrite(name, model='passive', **kwargs)

	Bases: Compartment

A class that automatically generates and handles all differential equations
and parameters needed to describe a dendritic compartment, its active
mechanisms, and any currents (synaptic, dendritic, ionic, noise) passing
through it.

See also

Dendrite inherits all the methods and attributes of its parent class
Compartment. For a complete list, please
refer to the documentation of the latter.

	Parameters:

	
	name (str) – A unique name used to tag compartment-specific equations and parameters.
It is also used to distinguish the various compartments belonging to the
same NeuronModel.

	model (str, optional) – A keyword for accessing Dendrify’s library models. Dendritic compartments
are by default set to 'passive'.

Methods:

	dspikes

	Adds the mechanisms and parameters needed for dendritic spiking.

Attributes:

	event_actions

	A string that is used to tell Brian how to handle the dSpike events.

	events

	A dictionary of all dSpike events created for a single dendrite.

	
dspikes(channel, threshold=None, g_rise=None, g_fall=None)

	Adds the mechanisms and parameters needed for dendritic spiking. Under
the hood, this method creates all equations, conditions and actions to
utilize Brian’s custom events functionality. Spikes are generated through
the sequential activation of a positive (sodium or calcium-like) and a
negative current (potassium-like current) when a specified dSpike
threshold is crossed.

Hint

The dendritic spiking mechanism as implemented here has three
distinct phases.

INACTIVE PHASE:

When the dendritic voltage is subthreshold OR the simulation step is
within the refractory period. dSpikes cannot be generated during this
phase.

DEPOLARIZATION PHASE:

When the dendritic voltage crosses the dSpike threshold AND the
refractory period has elapsed. This triggers the instant activation
of a positive current that enters the dendrite and then decays
exponentially.

REPOLARIZATION PHASE:

This phase starts automatically after a specified delay from the
initiation of the dSpike. A negative current is activated instantly
and then decays exponentially. Also a new refractory period begins.

	Parameters:

	
	channel (str) – Ion channel type. Available options: 'Na', 'Ca' (coming soon).

	threshold (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – The membrane voltage threshold for dendritic spiking, by default
None.

	g_rise (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – The conductance of the current that is activated during the
depolarization phase, by default None.

	g_fall (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – The conductance of the current that is activated during the
repolarization phase, by default None.

	
property event_actions

	A string that is used to tell Brian how to handle the dSpike events.

	Returns:

	Executable code that runs automatically in the background.

	Return type:

	str

	
property events

	A dictionary of all dSpike events created for a single dendrite.

	Returns:

	Keys: event names, values: events conditions.

	Return type:

	dict

 NeuronModel

NeuronModel

	
class dendrify.neuronmodel.NeuronModel(connections, **kwargs)

	Bases: object

Creates a multicompartmental neuron model by connecting individual
compartments and merging their equations, parameters and custom events.This
model can then be used for creating a population of neurons through Brian’s
NeuronGroup [https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html].
This class also contains useful methods for managing model properties and
for automating the initialization of custom events and simulation parameters.

Tip

Dendrify aims to facilitate the development of reduced,
few-compartmental I&F models that help us study how key dendritic
properties may affect network-level functions. It is not designed to
substitute morphologically and biophysically detailed neuron models,
commonly used for highly-accurate, single-cell simulations. If you are
interested in the latter category of models, please see Brian’s
SpatialNeuron [https://brian2.readthedocs.io/en/stable/reference/brian2.spatialneuron.spatialneuron.SpatialNeuron.html].

	Parameters:

	
	connections (list[tuple[Compartment, Compartment, str | Quantity]]) – A description of how the various compartments belonging to the same
neuron model should be connected.

	kwargs (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Kwargs are used to specify important electrophysiological properties,
such as the specific capacitance or resistance. For all available options
see: EphysProperties.

Warning

Parameters set here affect all model compartments and can override any
compartment-specific parameters.

Example

>>> # Valid format: [*(x, y, z)], where
>>> # x -> Soma or Dendrite object
>>> # y -> Soma or Dendrite object other than x
>>> # z -> 'half_cylinders' or 'cylinder_ + name' or brian2.nS unit
>>> # (by default 'half_cylinders')
>>> soma = Soma('s', ...)
>>> prox = Dendrite('p', ...)
>>> dist = Dendrite('d', ...)
>>> connections = [(soma, prox, 15*nS), (prox, dist, 10*nS)]
>>> model = NeuronModel(connections)

Methods:

	add_equations

	Allows adding custom equations.

	add_params

	Allows specifying extra/custom parameters.

	as_graph

	Plots a graph-like representation of a NeuronModel using the Graph [https://networkx.org/documentation/stable/reference/classes/graph.html] class and the Fruchterman-Reingold force-directed algorithm [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html] from Networkx [https://networkx.org/].

	dspike_properties

	Allows specifying essential dSpike properties affecting all compartments.

	link

	Links a NeuronModel to a NeuronGroup [https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html].

Attributes:

	equations

	Merges all compartments' equations into a single string.

	event_actions

	Creates a list of all event actions for dendritic spiking.

	events

	Organizes all custom events for dendritic spiking into a dictionary.

	parameters

	Merges all compartments' parameters into a dictionary.

	
add_equations(eqs)

	Allows adding custom equations.

	Parameters:

	eqs (str) – A string of Brian-compatible equations.

	
add_params(params_dict)

	Allows specifying extra/custom parameters.

	Parameters:

	params_dict (dict) – A dictionary of parameters.

	
as_graph(fontsize=10, fontcolor='white', scale_nodes=1, color_soma='#4C6C92', color_dendrites='#A7361C', alpha=1, scale_edges=1, seed=None)

	Plots a graph-like representation of a NeuronModel using the
Graph [https://networkx.org/documentation/stable/reference/classes/graph.html] class and the
Fruchterman-Reingold force-directed algorithm [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html]
from Networkx [https://networkx.org/].

	Parameters:

	
	fontsize (int, optional) – The size in pt of each node’s name, by default 10.

	fontcolor (str, optional) – The color of each node’s name, by default 'white'.

	scale_nodes (float, optional) – Percentage change in node size, by default 1.

	color_soma (str, optional) – Somatic node color, by default '#4C6C92'.

	color_dendrites (str, optional) – Dendritic nodes color, by default '#A7361C'.

	alpha (float, optional) – Nodes color opacity, by default 1.

	scale_edges (float, optional) – The percentage change in edges length, by default 1.

	seed (int, optional) – Set the random state for deterministic node layouts, by default
None.
.

	
dspike_properties(channel=None, tau_rise=None, tau_fall=None, offset_fall=None, refractory=None)

	Allows specifying essential dSpike properties affecting all compartments.

	Parameters:

	
	channel (str) – Ion channel type. Available options: 'Na', 'Ca' (coming
soon).

	tau_rise (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – The decay time constant of the current causing the dSpike’s
depolarization phase, by default None.

	tau_fall (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – The decay time constant of the current causing the dSpike’s
repolarization phase, by default None.

	offset_fall (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – The delay for starting the dSpike repolarization phase, by default
None.

	refractory (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]) – The duration of the dSpike inactive period, by default None.

	
property equations

	Merges all compartments’ equations into a single string.

	Returns:

	All model equations.

	Return type:

	str

	
property event_actions

	Creates a list of all event actions for dendritic spiking.

	Returns:

	All event actions for dendritic spiking

	Return type:

	list

	
property events

	Organizes all custom events for dendritic spiking into a dictionary.

	Returns:

	All model custom events for dendritic spiking.

	Return type:

	dict

	
link(ng, automate='all', verbose=False)

	Links a NeuronModel to a
NeuronGroup [https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html].
This allows dendrify to automatically handle the initialization of
important simulation parameters.

	Parameters:

	
	ng (brian2.NeuronGroup) – A NeuronGroup that was created using a NeuronModel.

	automate (str, optional) – What to automate. Available options: 'all' (default),
'v_rest', 'events'.

	verbose (bool, optional) – If True it prints all the code that was created and run in the
background by dendrify, by default False

	
property parameters

	Merges all compartments’ parameters into a dictionary.

	Returns:

	All model parameters.

	Return type:

	dict

 EphysProperties

EphysProperties

	
class dendrify.ephysproperties.EphysProperties(name=None, length=None, diameter=None, cm=None, gl=None, r_axial=None, v_rest=None, scale_factor=1.0, spine_factor=1.0)

	Bases: object

A class for calculating various important electrophysiological properties
for a single compartment.

Note

An EphysProperties object is automatically created and linked to a
Compartment, Soma, or Dendrite object
during the instantiation of the latter.

	Parameters:

	
	name (str, optional) – A compartment’s name, by default None

	length (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – A compartment’s length, by default None

	diameter (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – A compartment’s diameter, by default None

	cm (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Specific capacitance (usually μF / cm^2), by default None

	gl (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Specific leakage conductance (usually μS / cm^2), by default None

	r_axial (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Axial resistance (usually Ohm * cm), by default None

	v_rest (Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity], optional) – Resting membrane voltage, by default None

	scale_factor (float, optional) – A global area scale factor, by default 1.0

	spine_factor (float, optional) – A dendritic area scale factor to account for spines, by default 1.0

Attributes:

	area

	A compartment's surface area (open cylinder) based on its length and diameter.

	capacitance

	A compartment's absolute capacitance based on its specific capacitance (cm) and surface area.

	g_cylinder

	The conductance (of coupling currents) passing through a cylindrical compartment based on its dimensions and its axial resistance.

	g_leakage

	A compartment's absolute leakage conductance based on its specific leakage conductance (gl) and surface area.

	parameters

	Returns a dictionary of all electrophysiological parameters.

	total_area_factor

	The total surface are factor.

Methods:

	g_couple

	The conductance (of coupling currents) between the centers of two adjacent cylindrical compartments, based on their dimensions and the axial resistance.

	
property area

	A compartment’s surface area (open cylinder) based on its length and
diameter.

	Returns:

	A compartment’s surface area

	Return type:

	Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]

	
property capacitance

	A compartment’s absolute capacitance based on its specific capacitance
(cm) and surface area.

	Return type:

	Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]

	
static g_couple(comp1, comp2)

	The conductance (of coupling currents) between the centers of
two adjacent cylindrical compartments, based on their dimensions
and the axial resistance.

	Parameters:

	
	comp1 (EphysProperties) – An EphysProperties object

	comp2 (EphysProperties) – An EphysProperties object

	Return type:

	Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]

	
property g_cylinder

	The conductance (of coupling currents) passing through a cylindrical
compartment based on its dimensions and its axial resistance. To be
used when then the total number of compartments is low and the
adjacent-to-soma compartments are highly coupled with the soma.

	Return type:

	Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]

	
property g_leakage

	A compartment’s absolute leakage conductance based on its specific
leakage conductance (gl) and surface area.

	Return type:

	Quantity [https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity]

	
property parameters

	Returns a dictionary of all electrophysiological parameters.

	Return type:

	dict

	
property total_area_factor

	The total surface are factor.

	Return type:

	float

 Model library

Model library

[image: ../_images/under-construction.png]

Note

Dendrify relies on Brian’s Equations-based [https://brian2.readthedocs.io/en/stable/user/equations.html]
approach to define models as systems of first order ordinary differential
equations. For convenience, Dendrify includes a library of default models
(see below) however users can also provide custom model equations.

Somatic models [1] [2]

Leaky Integrate-and-Fire

\[C\frac{dV}{dt}=-g_L(V-E_L)+I\]

where
\(C\) is the membrane capacitance,
\(V\) the membrane potential,
\(g_L\) the leak conductance,
\(E_L\) the leak reversal potential and
\(I\) is the input current.
When the firing threshold \(V_\theta\) is crossed, \(V\) resets to a
fixed value \(V_r\).

Adaptive Integrate-and-Fire

\[C\frac{dV}{dt}=-g_L(V-E_L)-w+I\]

\[\tau_w\frac{dw}{dt}=a(V-E_L)-w\]

where
\(w\) is the adaptation variable,
\(a\) the adaptation coupling parameter and
\(τ_w\) is the adaptation time constant.
When the firing threshold \(V_\theta\) is crossed, \(V\) resets to a
fixed value \(V_r\) and \(w \rightarrow w+b\), where \(b\) is the
spike-triggered adaptation current.

Adaptive Exponential Integrate-and-Fire

\[C\frac{dV}{dt}=-g_L(V-E_L)+g_L\Delta_T\exp\left(\frac{V-V_T}{\Delta_T}\right)-w+I\]

\[\tau_w\frac{dw}{dt}=a(V-E_L)-w\]

where
\(\Delta_T\) is the slope factor and
\(V_T\) the voltage threshold.
When the firing threshold \(V_\theta\) is crossed, \(V\) resets to a
fixed value \(V_r\) and \(w \rightarrow w+b\), where \(b\) is the
spike-triggered adaptation current.

Dendritic models

Synaptic models [3] [4]

AMPA

\[I_{\text{AMPA}}=\bar{g}_{\text{AMPA}}(E_{\text{AMPA}}-V)s(t)\]

\[\frac{ds}{dt}=\frac{-s}{\tau_{\text{AMPA}}^{\text{decay}}}\]

where
\(\bar{g}_{\text{AMPA}}\) is the AMPA synaptic conductance,
\(s\) the channel state variable,
\(E_{\text{AMPA}}\) the AMPA reversal potential,
\(V\) the membrane potential and
\(\tau_{\text{AMPA}}^{\text{decay}}\) the AMPA decay time constant. When a
pre-synaptic spike arrives \(s \rightarrow s+1\).

AMPA (rise & decay)

\[I_{\text{AMPA}}=\bar{g}_{\text{AMPA}}(E_{\text{AMPA}}-V)x(t)\]

\[\frac{dx}{dt}=\frac{-x}{\tau_{\text{AMPA}}^{\text{decay}}}+s(t)\]

\[\frac{ds}{dt}=\frac{-s}{\tau_{\text{AMPA}}^{\text{rise}}}\]

where
\(s\) and
\(x\) describe the rise and decay kinetics of the channel respectively,
\(\tau_{\text{AMPA}}^{\text{rise}}\) is the AMPA rise time constant and
\(\tau_{\text{AMPA}}^{\text{decay}}\) is the AMPA decay time constant.
When a pre-synaptic spike arrives \(s \rightarrow s+1\).

NMDA

\[I_{\text{NMDA}}=\bar{g}_{\text{NMDA}}(E_{\text{NMDA}}-V)s(t)\sigma(V)\]

\[\frac{ds}{dt}=\frac{-s}{\tau_{\text{NMDA}}^{\text{decay}}}\]

\[\sigma(V)=\frac{1}{1+\frac{{\left[{\rm{Mg}}^{2+}\right]}_{o}}{\beta }\cdot {{\exp }}\left(-\alpha \left(V-\gamma \right)\right)}\]

where
\(\bar{g}_{\text{NMDA}}\) is the NMDA synaptic conductance,
\(s\) the channel state variable,
\(E_{\text{NMDA}}\) the NMDA reversal potential,
\(\tau_{\text{NMDA}}^{\text{decay}}\) the NMDA decay time constant,
\(\beta\) (mM), \(\alpha\) (mV-1) and \(\gamma\) (mV) control the
magnesium and voltage dependencies and \([\rm{Mg}^{2+}]_{o}\)
denotes the external magnesium concentration (mM).
When a pre-synaptic spike arrives \(s \rightarrow s+1\).

References

[1]
https://neuronaldynamics.epfl.ch/online/Ch1.S3.html

[2]
https://neuronaldynamics.epfl.ch/online/Ch6.S1.html

[3]
https://neuronaldynamics.epfl.ch/online/Ch3.S1.html

[4]
https://link.springer.com/chapter/10.1007/978-0-387-87708-2_7#Sec1

 Index

Index

 A
 | C
 | D
 | E
 | G
 | L
 | N
 | P
 | S
 | T

A

 	
 	add_equations() (dendrify.neuronmodel.NeuronModel method)

 	add_params() (dendrify.neuronmodel.NeuronModel method)

 	
 	area (dendrify.compartment.Compartment property)

 	(dendrify.ephysproperties.EphysProperties property)

 	as_graph() (dendrify.neuronmodel.NeuronModel method)

C

 	
 	capacitance (dendrify.compartment.Compartment property)

 	(dendrify.ephysproperties.EphysProperties property)

 	
 	Compartment (class in dendrify.compartment)

 	connect() (dendrify.compartment.Compartment method)

D

 	
 	Dendrite (class in dendrify.compartment)

 	
 	dspike_properties() (dendrify.neuronmodel.NeuronModel method)

 	dspikes() (dendrify.compartment.Dendrite method)

E

 	
 	EphysProperties (class in dendrify.ephysproperties)

 	equations (dendrify.compartment.Compartment property)

 	(dendrify.neuronmodel.NeuronModel property)

 	
 	event_actions (dendrify.compartment.Dendrite property)

 	(dendrify.neuronmodel.NeuronModel property)

 	events (dendrify.compartment.Dendrite property)

 	(dendrify.neuronmodel.NeuronModel property)

G

 	
 	g_couple() (dendrify.ephysproperties.EphysProperties static method)

 	g_cylinder (dendrify.ephysproperties.EphysProperties property)

 	
 	g_leakage (dendrify.compartment.Compartment property)

 	(dendrify.ephysproperties.EphysProperties property)

L

 	
 	link() (dendrify.neuronmodel.NeuronModel method)

N

 	
 	NeuronModel (class in dendrify.neuronmodel)

 	
 	noise() (dendrify.compartment.Compartment method)

P

 	
 	parameters (dendrify.compartment.Compartment property)

 	(dendrify.ephysproperties.EphysProperties property)

 	(dendrify.neuronmodel.NeuronModel property)

S

 	
 	Soma (class in dendrify.compartment)

 	
 	synapse() (dendrify.compartment.Compartment method)

T

 	
 	total_area_factor (dendrify.ephysproperties.EphysProperties property)

 Important literature

Important literature

	Introducing the Dendrify framework for incorporating dendrites to spiking neural networks
M Pagkalos, S Chavlis, P Poirazi
DOI: https://doi.org/10.1038/s41467-022-35747-8

 Release notes

Release notes

Version 1.0.8

	Improved documentation.

	Minor improvements.

Version 1.0.5

	Improved documentation.

	Minor bug fixes.

Version 1.0.4

	Redesigned documentation page.

	Added more type hints.

	Improved compatibility with older Python versions.

	Minor bug fixes.

 Code of Conduct

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to make participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies within all project spaces, and it also applies when
an individual is representing the project or its community in public spaces.
Examples of representing a project or community include using an official
project e-mail address, posting via an official social media account, or acting
as an appointed representative at an online or offline event. Representation of
a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at mpagkalos93@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor
Covenant [https://www.contributor-covenant.org], version 1.4,
available at
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

 Index

Index

 A
 | C
 | D
 | E
 | G
 | L
 | N
 | P
 | S
 | T

A

 	
 	add_equations() (dendrify.neuronmodel.NeuronModel method)

 	add_params() (dendrify.neuronmodel.NeuronModel method)

 	
 	area (dendrify.compartment.Compartment property)

 	(dendrify.ephysproperties.EphysProperties property)

 	as_graph() (dendrify.neuronmodel.NeuronModel method)

C

 	
 	capacitance (dendrify.compartment.Compartment property)

 	(dendrify.ephysproperties.EphysProperties property)

 	
 	Compartment (class in dendrify.compartment)

 	connect() (dendrify.compartment.Compartment method)

D

 	
 	Dendrite (class in dendrify.compartment)

 	
 	dspike_properties() (dendrify.neuronmodel.NeuronModel method)

 	dspikes() (dendrify.compartment.Dendrite method)

E

 	
 	EphysProperties (class in dendrify.ephysproperties)

 	equations (dendrify.compartment.Compartment property)

 	(dendrify.neuronmodel.NeuronModel property)

 	
 	event_actions (dendrify.compartment.Dendrite property)

 	(dendrify.neuronmodel.NeuronModel property)

 	events (dendrify.compartment.Dendrite property)

 	(dendrify.neuronmodel.NeuronModel property)

G

 	
 	g_couple() (dendrify.ephysproperties.EphysProperties static method)

 	g_cylinder (dendrify.ephysproperties.EphysProperties property)

 	
 	g_leakage (dendrify.compartment.Compartment property)

 	(dendrify.ephysproperties.EphysProperties property)

L

 	
 	link() (dendrify.neuronmodel.NeuronModel method)

N

 	
 	NeuronModel (class in dendrify.neuronmodel)

 	
 	noise() (dendrify.compartment.Compartment method)

P

 	
 	parameters (dendrify.compartment.Compartment property)

 	(dendrify.ephysproperties.EphysProperties property)

 	(dendrify.neuronmodel.NeuronModel property)

S

 	
 	Soma (class in dendrify.compartment)

 	
 	synapse() (dendrify.compartment.Compartment method)

T

 	
 	total_area_factor (dendrify.ephysproperties.EphysProperties property)

_static/plus.png

_images/intro.png
Na* spikes

' cat spikes

NMDA spikes

Detailed biophysical
neuron models

—>

b b1z |
W
Yy

SNN comprising active
dendritic mechanisms

_images/intro_dark.png
Na* spikes

cat spikes

NMDA spikes

Detailed biophysical
neuron models

S
: .

SNN comprising active
dendritic mechanisms

_images/Fig3.png
Model
distal aMER
(100 x 0.5 pm) NMDA
proximal WUl
(100 x 1 pm) DR
trunk
(100 x 2.5 pm)
soma
(25 x 25 pm)
dendrites
5 100 s
£
N
E 4
5 0
3 0
0 10 20
Time (ms)
distal
s -
E60 60
o
7 f
&30 e 30
< ~e—control
2o OFF o

0 30 60 90
Expected EPSP (mV)

Input distal Input proximal Input trunk
n 123 pA n 309 pA n 560 pA
>
E
il
A 10 ms
I N K
)
@ _}\ _/\
e ——
soma AP backpropagation

0 10 20
Time (ms)

proximal

18
—=—control

OFF

0 30 60 90
Expected EPSP (mV)

130 pA

2ms
Ina trunk
I
Ina hprox
I
L
Ina dist
Ik

_static/under-construction.png
UNDER
CONSTRUCTION

NN

_static/Fig3.png
Model
distal aMER
(100 x 0.5 pm) NMDA
proximal WUl
(100 x 1 pm) DR
trunk
(100 x 2.5 pm)
soma
(25 x 25 pm)
dendrites
5 100 s
£
N
E 4
5 0
3 0
0 10 20
Time (ms)
distal
s -
E60 60
o
7 f
&30 e 30
< ~e—control
2o OFF o

0 30 60 90
Expected EPSP (mV)

Input distal Input proximal Input trunk
n 123 pA n 309 pA n 560 pA
>
E
il
A 10 ms
I N K
)
@ _}\ _/\
e ——
soma AP backpropagation

0 10 20
Time (ms)

proximal

18
—=—control

OFF

0 30 60 90
Expected EPSP (mV)

130 pA

2ms
Ina trunk
I
Ina hprox
I
L
Ina dist
Ik

_images/under-construction.png
UNDER
CONSTRUCTION

NN

_static/Fig2.png
100 pA — soma 100 pA — apical 100 pA — basal

Model o, _— o,
>
G
©
. 100 ms
apical NMDA
AMPA
c d
AMPA & NMDA NMDA blocked Somatic responses
30

input #
35

s
soma € AMPA&NMDA
® o 20
o
&
3
basal # £ 10
20 g
2 8
5 = AMPA

0 10 20
Expected EPSP (mV)

_images/Fig2.png
100 pA — soma 100 pA — apical 100 pA — basal

Model o, _— o,
>
G
©
. 100 ms
apical NMDA
AMPA
c d
AMPA & NMDA NMDA blocked Somatic responses
30

input #
35

s
soma € AMPA&NMDA
® o 20
o
&
3
basal # £ 10
20 g
2 8
5 = AMPA

0 10 20
Expected EPSP (mV)

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Installation

 		
 Dependencies

 		
 GPU support

 		
 Tutorial

 		
 Examples

 		
 Classes

 		
 Compartment

 		
 Compartment

 		
 Soma

 		
 Soma

 		
 Dendrite

 		
 Dendrite

 		
 NeuronModel

 		
 NeuronModel

 		
 EphysProperties

 		
 EphysProperties

 		
 Model library

 		
 Somatic models

 		
 Leaky Integrate-and-Fire

 		
 Adaptive Integrate-and-Fire

 		
 Adaptive Exponential Integrate-and-Fire

 		
 Dendritic models

 		
 Synaptic models

 		
 AMPA

 		
 AMPA (rise & decay)

 		
 NMDA

 		
 References

 		
 Index

 		
 Important literature

 		
 Release notes

 		
 Version 1.0.8

 		
 Version 1.0.5

 		
 Version 1.0.4

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_stat