
Dendrify
Release 1.0.9

Michalis Pagkalos

Jul 07, 2023

GETTING STARTED

1 Installation 3
1.1 Dependencies . 3
1.2 GPU support . 3

2 Tutorial 5

3 Examples 7

4 Classes 11
4.1 Compartment . 11
4.2 Soma . 14
4.3 Dendrite . 15
4.4 NeuronModel . 16
4.5 EphysProperties . 19

5 Model library 23
5.1 Somatic models . 23
5.2 Dendritic models . 24
5.3 Synaptic models . 24

6 Index 27

7 Important literature 29

8 Release notes 31
8.1 Version 1.0.8 . 31
8.2 Version 1.0.5 . 31
8.3 Version 1.0.4 . 31

9 Code of Conduct 33
9.1 Our Pledge . 33
9.2 Our Standards . 33
9.3 Our Responsibilities . 33
9.4 Scope . 34
9.5 Enforcement . 34
9.6 Attribution . 34

Index 35

i

ii

Dendrify, Release 1.0.9

Although neuronal dendrites greatly influence how single neurons process incoming information, their role in network-
level functions remain largely unexplored. Current SNNs are usually quite simplistic, overlooking essential dendritic
properties. Conversely, circuit models with morphologically detailed neuron models are computationally costly, thus
impractical for large-network simulations.

To bridge the gap between these two, we introduce Dendrify, a free, open-source Python package compatible with
the Brian 2 simulator. Dendrify, through simple commands, automatically generates reduced compartmental neuron
models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a
good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions
to network-level functions.

Tip: If you use Dendrify for your published research, we kindly ask you to cite our article: Introducing the Dendrify
framework for incorporating dendrites to spiking neural networks M Pagkalos, S Chavlis, P Poirazi DOI: https:
//doi.org/10.1038/s41467-022-35747-8

GETTING STARTED 1

https://pypi.python.org/pypi/Dendrify
https://dendrify.readthedocs.io/en/stable/?badge=stable
CODE_OF_CONDUCT.md
https://brian2.readthedocs.io/en/stable/
https://doi.org/10.1038/s41467-022-35747-8
https://doi.org/10.1038/s41467-022-35747-8

Dendrify, Release 1.0.9

CONTENTS:

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION

Dendrify is included in the Python package index: https://pypi.org/project/dendrify. The easiest way to install it is
through pip, using the command:

pip install dendrify

1.1 Dependencies

• Brian 2 (required) is a simulator for spiking neural networks. It is written in Python and is available on almost
all platforms. Brian is designed to be easy to learn and use, highly flexible and easily extensible.

– How to install Brian 2

• Netwokx (optional) is a Python package for the creation, manipulation, and study of the structure, dynamics, and
functions of complex networks. If you wish Dendrify to have access to certain experimental model visualization
features, you can install it using the command:

pip install networkx

1.2 GPU support

Dendrify is compatible with Brian2CUDA, a Python package for simulating spiking neural networks on graphics pro-
cessing units (GPUs). Brian2CUDA is an extension of Brian2 that uses the code generation system of the latter to
generate simulation code in C++/CUDA, which is then executed on NVIDIA GPUs.

• How to install Brian2CUDA

3

https://pypi.org/project/dendrify
https://brian2.readthedocs.io/en/stable/index.html
https://brian2.readthedocs.io/en/stable/introduction/install.html
https://networkx.org/
https://brian2cuda.readthedocs.io/
https://brian2cuda.readthedocs.io/en/latest/introduction/install.html

Dendrify, Release 1.0.9

4 Chapter 1. Installation

CHAPTER

TWO

TUTORIAL

Coming soon

5

Dendrify, Release 1.0.9

6 Chapter 2. Tutorial

CHAPTER

THREE

EXAMPLES

Bellow you will find two model examples adopted from the Dendrify paper.

• Example 1 | A basic compartmental model with passive dendrites

• Example 2 | A reduced compartmental model capturing active dendritic properties

Tip: By clicking the “Open in Colab” button located under each example, you can run in your browser (without
locally installing Dendrify or Brian) an interactive Jupyter notebook that reproduces the respective neuron models and
simulation results.

Example 1 | A basic compartmental model with passive dendrites.

In this example we show that even rudimentary models can reproduce essentia neuronal properties such as the electrical
segmentation caused by dendrites This allows multiple integration sites to coexist within a neuron and dendrite to
operate semi-autonomously from the soma, while greatly affecting neuronal output.

a) Schematic illustration of a compartmental model consisting of a soma (spiking unit) and two dendrites (passive inte-
grators). The apical dendrite can integrate excitatory synapses comprising AMPA and NMDA currents. b) Membrane
voltage responses to current injections of the same amplitude are applied individually to each compartment. Notice
the electrical segregation caused by the resistance between the three neuronal compartments. c Somatic responses to a

7

https://doi.org/10.1038/s41467-022-35747-8

Dendrify, Release 1.0.9

varying number of simultaneous synaptic inputs (5–35 synapses). Left: control EPSPs, Right: EPSPs in the presence
of NMDA blockers. d) Input-output function of the apical dendrite as recorded at the soma. The dotted line represents
a linear function. Notice the shift from supralinear to the sublinear mode when NMDARs are blocked.

Example 2: A reduced compartmental model capturing active dendritic properties.

In this example we show that reduced compartmental I&F models, equipped with event-driven dendritic spiking mech-
anisms can faithfully reproduce a broad range of dendritic properties such as: i) Supralinear input integration, ii)
dendrite-specific spiking threshold, iii) distance-dependent filtering, iv) backpropagation of somatic spikes.

a) Schematic illustration of a compartmental model consisting of a soma (leaky I&F) and three dendritic segments
(trunk, proximal, distal) equipped with Na+ VGICs. The distal and proximal segments can also receive AMPA and
NMDA synapses. b–d) Rheobase current injections (5ms square pulses) for dSpike generation were applied individ-
ually to each dendritic segment. Shaded areas: location of current injection and dSpike initiation. Top: stimulation
protocol showing the current threshold for a single dSpike (rheobase current). e) First temporal derivative of den-
dritic (left) and somatic (right) voltage traces from panels (b–d). f) Input–output function of the distal (left) and
proximal (right) segment as recorded from the corresponding dendritic locations. We also indicate the number of
quasi-simultaneously activated synapses (ISI=0.1ms) needed to elicit a single dSpike in each case. OFF: deactivation

8 Chapter 3. Examples

https://colab.research.google.com/github/Poirazi-Lab/dendrify/blob/main/paper_figures/Fig2_notebook.ipynb

Dendrify, Release 1.0.9

of Na+ dSpikes. Dashed lines: linear input–output relationship. g) Left: Backpropagating dSpikes are generated in
response to somatic current injections. The short-amplitude spikelets detected in the distal branch are subthreshold
voltage responses for dSpike initiation. Right: Magnified and superimposed voltage traces (top) from the dashed box
(left). Bottom: dendritic voltage-activated currents responsible for dSpikes generation in each dendritic segment.

9

https://colab.research.google.com/github/Poirazi-Lab/dendrify/blob/main/paper_figures/Fig3_notebook.ipynb

Dendrify, Release 1.0.9

10 Chapter 3. Examples

CHAPTER

FOUR

CLASSES

4.1 Compartment

class dendrify.compartment.Compartment(name, model='passive', **kwargs)
Bases: object

A class that automatically generates and handles all differential equations and parameters needed to describe a
single compartment and any currents (synaptic, dendritic, noise) passing through it.

Parameters

• name (str) – A unique name used to tag compartment-specific equations and parameters. It
is also used to distinguish the various compartments belonging to the same NeuronModel.

• model (str, optional) – A keyword for accessing Dendrify’s library models. Custom
models can also be provided but they should be in the same formattable structure as the library
models. Available options: 'passive' (default), 'adaptiveIF', 'leakyIF', 'adex'.

• kwargs (Quantity, optional) – Kwargs are used to specify important electrophysiologi-
cal properties, such as the specific capacitance or resistance. For more information see:
EphysProperties.

Examples

>>> # specifying equations only:
>>> compX = Compartment('nameX', 'leakyIF')
>>> # specifying equations and ephys properties:
>>> compY = Compartment('nameY', 'adaptiveIF', length=100*um, diameter=1*um,
>>> cm=1*uF/(cm**2), gl=50*uS/(cm**2))

Attributes:

11

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

Dendrify, Release 1.0.9

area A compartment's surface area (open cylinder) based
on its length and diameter.

capacitance A compartment's absolute capacitance based on its
specific capacitance (cm) and surface area.

equations All differential equations that have been generated for
a single compartment.

g_leakage A compartment's absolute leakage conductance
based on its specific leakage conductance (gl) and
surface area.

parameters All parameters that have been generated for a single
compartment.

Methods:

connect Allows the connection (electrical coupling) of two
compartments.

noise Adds a stochastic noise current.
synapse Adds synaptic currents equations and parameters.

property area

A compartment’s surface area (open cylinder) based on its length and diameter.

Return type
Quantity

property capacitance

A compartment’s absolute capacitance based on its specific capacitance (cm) and surface area.

Return type
Quantity

connect(other, g='half_cylinders')
Allows the connection (electrical coupling) of two compartments.

Parameters

• other (Compartment) – Another compartment.

• g (str or Quantity, optional) – The coupling conductance. It can be set explicitly or
calculated automatically (provided all necessary parameters exist). Available options:
'half_cylinders' (default), 'cylinder_<compartment name>'.

Warning: The automatic approaches require that both compartments to be connected have specified
length, diameter and axial resistance.

12 Chapter 4. Classes

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

Dendrify, Release 1.0.9

Examples

>>> compX, compY = Compartment('x', **kwargs), Compartment('y', **kwargs)
>>> # explicit approach:
>>> compX.connect(compY, g=10*nS)
>>> # half cylinders (default):
>>> compX.connect(compY)
>>> # cylinder of one compartment:
>>> compX.connect(compY, g='cylinder_x')

property equations

All differential equations that have been generated for a single compartment.

Return type
str

property g_leakage

A compartment’s absolute leakage conductance based on its specific leakage conductance (gl) and surface
area.

Return type
Quantity

noise(tau=20. * msecond, sigma=3. * pamp, mean=0. * amp)
Adds a stochastic noise current. For more information see the Noise section: of Models and neuron groups

Parameters

• tau (Quantity, optional) – Time constant of the Gaussian noise, by default 20*ms

• sigma (Quantity, optional) – Standard deviation of the Gaussian noise, by default 3*pA

• mean (Quantity, optional) – Mean of the Gaussian noise, by default 0*pA

property parameters

All parameters that have been generated for a single compartment.

Return type
dict

synapse(channel=None, pre=None, g=None, t_rise=None, t_decay=None, scale_g=False)
Adds synaptic currents equations and parameters. When only the decay time constant t_decay is provided,
the synaptic model assumes an instantaneous rise of the synaptic conductance followed by an exponential
decay. When both the rise t_rise and decay t_decay constants are provided, synapses are modelled as a
sum of two exponentials. For more information see: Modeling Synapses by Arnd Roth & Mark C. W. van
Rossum

Parameters

• channel (str) – Synaptic channel type. Available options: 'AMPA', 'NMDA', 'GABA', by
default None

• pre (str) – A unique name to distinguish synapses of the same type coming from different
input sources, by default None

• g (Quantity) – Maximum synaptic conductance, by default None

• t_rise (Quantity) – Rise time constant, by default None

• t_decay (Quantity) – Decay time constant, by default None

4.1. Compartment 13

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/user/models.html
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://doi.org/10.7551/mitpress/9780262013277.003.0007
https://doi.org/10.7551/mitpress/9780262013277.003.0007
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

Dendrify, Release 1.0.9

• scale_g (bool, optional) – Option to add a normalization factor to scale the maximum
conductance at 1 when synapses are modelled as a difference of exponentials (have both
rise and decay kinetics), by default False.

Examples

>>> comp = Compartment('comp')
>>> # adding an AMPA synapse with instant rise & exponential decay:
>>> comp.synapse('AMPA', g=1*nS, t_decay=5*ms, pre='X')
>>> # same channel, different conductance & source:
>>> comp.synapse('AMPA', g=2*nS, t_decay=5*ms, pre='Y')
>>> # different channel with both rise & decay kinetics:
>>> comp.synapse('NMDA', g=1*nS, t_rise=5*ms, t_decay=50*ms, pre='X')

4.2 Soma

class dendrify.compartment.Soma(name, model='leakyIF', **kwargs)
Bases: Compartment

A class that automatically generates and handles all differential equations and parameters needed to describe a
somatic compartment and any currents (synaptic, dendritic, noise) passing through it.

See also:

Soma acts as a wrapper for Compartment with slight changes to account for certain somatic properties. For a
full list of its methods and attributes, please see: Compartment.

Parameters

• name (str) – A unique name used to tag compartment-specific equations and parameters. It
is also used to distinguish the various compartments belonging to the same NeuronModel.

• model (str, optional) – A keyword for accessing Dendrify’s library models. Custom
models can also be provided but they should be in the same formattable structure as the
library models. Available options: 'leakyIF' (default), 'adaptiveIF', 'adex'.

• kwargs (Quantity, optional) – Kwargs are used to specify important electrophysiologi-
cal properties, such as the specific capacitance or resistance. For more information see:
EphysProperties.

Examples

>>> # specifying equations only:
>>> somaX = Soma('nameX', 'leakyIF')
>>> # specifying equations and ephys properties:
>>> somaY = Soma('nameY', 'adaptiveIF', length=100*um, diameter=1*um,
>>> cm=1*uF/(cm**2), gl=50*uS/(cm**2))

14 Chapter 4. Classes

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

Dendrify, Release 1.0.9

4.3 Dendrite

class dendrify.compartment.Dendrite(name, model='passive', **kwargs)
Bases: Compartment

A class that automatically generates and handles all differential equations and parameters needed to describe
a dendritic compartment, its active mechanisms, and any currents (synaptic, dendritic, ionic, noise) passing
through it.

See also:

Dendrite inherits all the methods and attributes of its parent class Compartment. For a complete list, please refer
to the documentation of the latter.

Parameters

• name (str) – A unique name used to tag compartment-specific equations and parameters. It
is also used to distinguish the various compartments belonging to the same NeuronModel.

• model (str, optional) – A keyword for accessing Dendrify’s library models. Dendritic
compartments are by default set to 'passive'.

Methods:

dspikes Adds the mechanisms and parameters needed for den-
dritic spiking.

Attributes:

event_actions A string that is used to tell Brian how to handle the
dSpike events.

events A dictionary of all dSpike events created for a single
dendrite.

dspikes(channel, threshold=None, g_rise=None, g_fall=None)
Adds the mechanisms and parameters needed for dendritic spiking. Under the hood, this method creates
all equations, conditions and actions to utilize Brian’s custom events functionality. Spikes are generated
through the sequential activation of a positive (sodium or calcium-like) and a negative current (potassium-
like current) when a specified dSpike threshold is crossed.

Hint: The dendritic spiking mechanism as implemented here has three distinct phases.

INACTIVE PHASE:

When the dendritic voltage is subthreshold OR the simulation step is within the refractory period. dSpikes
cannot be generated during this phase.

DEPOLARIZATION PHASE:

When the dendritic voltage crosses the dSpike threshold AND the refractory period has elapsed. This
triggers the instant activation of a positive current that enters the dendrite and then decays exponentially.

REPOLARIZATION PHASE:

4.3. Dendrite 15

Dendrify, Release 1.0.9

This phase starts automatically after a specified delay from the initiation of the dSpike. A negative current
is activated instantly and then decays exponentially. Also a new refractory period begins.

Parameters

• channel (str) – Ion channel type. Available options: 'Na', 'Ca' (coming soon).

• threshold (Quantity) – The membrane voltage threshold for dendritic spiking, by de-
fault None.

• g_rise (Quantity) – The conductance of the current that is activated during the depolar-
ization phase, by default None.

• g_fall (Quantity) – The conductance of the current that is activated during the repolar-
ization phase, by default None.

property event_actions

A string that is used to tell Brian how to handle the dSpike events.

Returns
Executable code that runs automatically in the background.

Return type
str

property events

A dictionary of all dSpike events created for a single dendrite.

Returns
Keys: event names, values: events conditions.

Return type
dict

4.4 NeuronModel

class dendrify.neuronmodel.NeuronModel(connections, **kwargs)
Bases: object

Creates a multicompartmental neuron model by connecting individual compartments and merging their equa-
tions, parameters and custom events.This model can then be used for creating a population of neurons through
Brian’s NeuronGroup. This class also contains useful methods for managing model properties and for automating
the initialization of custom events and simulation parameters.

Tip: Dendrify aims to facilitate the development of reduced, few-compartmental I&F models that help us study
how key dendritic properties may affect network-level functions. It is not designed to substitute morphologically
and biophysically detailed neuron models, commonly used for highly-accurate, single-cell simulations. If you
are interested in the latter category of models, please see Brian’s SpatialNeuron.

Parameters

• connections (list[tuple[Compartment, Compartment, str | Quantity]]) – A
description of how the various compartments belonging to the same neuron model should
be connected.

16 Chapter 4. Classes

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html
https://brian2.readthedocs.io/en/stable/reference/brian2.spatialneuron.spatialneuron.SpatialNeuron.html

Dendrify, Release 1.0.9

• kwargs (Quantity, optional) – Kwargs are used to specify important electrophysiologi-
cal properties, such as the specific capacitance or resistance. For all available options see:
EphysProperties.

Warning: Parameters set here affect all model compartments and can override any compartment-specific
parameters.

Example

>>> # Valid format: [*(x, y, z)], where
>>> # x -> Soma or Dendrite object
>>> # y -> Soma or Dendrite object other than x
>>> # z -> 'half_cylinders' or 'cylinder_ + name' or brian2.nS unit
>>> # (by default 'half_cylinders')
>>> soma = Soma('s', ...)
>>> prox = Dendrite('p', ...)
>>> dist = Dendrite('d', ...)
>>> connections = [(soma, prox, 15*nS), (prox, dist, 10*nS)]
>>> model = NeuronModel(connections)

Methods:

add_equations Allows adding custom equations.
add_params Allows specifying extra/custom parameters.
as_graph Plots a graph-like representation of a NeuronModel

using the Graph class and the Fruchterman-Reingold
force-directed algorithm from Networkx.

dspike_properties Allows specifying essential dSpike properties affect-
ing all compartments.

link Links a NeuronModel to a NeuronGroup.

Attributes:

equations Merges all compartments' equations into a single
string.

event_actions Creates a list of all event actions for dendritic spiking.
events Organizes all custom events for dendritic spiking into

a dictionary.
parameters Merges all compartments' parameters into a dictio-

nary.

add_equations(eqs)
Allows adding custom equations.

Parameters
eqs (str) – A string of Brian-compatible equations.

add_params(params_dict)
Allows specifying extra/custom parameters.

4.4. NeuronModel 17

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://networkx.org/documentation/stable/reference/classes/graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/
https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html

Dendrify, Release 1.0.9

Parameters
params_dict (dict) – A dictionary of parameters.

as_graph(fontsize=10, fontcolor='white', scale_nodes=1, color_soma='#4C6C92',
color_dendrites='#A7361C', alpha=1, scale_edges=1, seed=None)

Plots a graph-like representation of a NeuronModel using the Graph class and the Fruchterman-Reingold
force-directed algorithm from Networkx.

Parameters

• fontsize (int, optional) – The size in pt of each node’s name, by default 10.

• fontcolor (str, optional) – The color of each node’s name, by default 'white'.

• scale_nodes (float, optional) – Percentage change in node size, by default 1.

• color_soma (str, optional) – Somatic node color, by default '#4C6C92'.

• color_dendrites (str, optional) – Dendritic nodes color, by default '#A7361C'.

• alpha (float, optional) – Nodes color opacity, by default 1.

• scale_edges (float, optional) – The percentage change in edges length, by default
1.

• seed (int, optional) – Set the random state for deterministic node layouts, by default
None. .

dspike_properties(channel=None, tau_rise=None, tau_fall=None, offset_fall=None, refractory=None)
Allows specifying essential dSpike properties affecting all compartments.

Parameters

• channel (str) – Ion channel type. Available options: 'Na', 'Ca' (coming soon).

• tau_rise (Quantity) – The decay time constant of the current causing the dSpike’s de-
polarization phase, by default None.

• tau_fall (Quantity) – The decay time constant of the current causing the dSpike’s re-
polarization phase, by default None.

• offset_fall (Quantity) – The delay for starting the dSpike repolarization phase, by
default None.

• refractory (Quantity) – The duration of the dSpike inactive period, by default None.

property equations

Merges all compartments’ equations into a single string.

Returns
All model equations.

Return type
str

property event_actions

Creates a list of all event actions for dendritic spiking.

Returns
All event actions for dendritic spiking

Return type
list

18 Chapter 4. Classes

https://networkx.org/documentation/stable/reference/classes/graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

Dendrify, Release 1.0.9

property events

Organizes all custom events for dendritic spiking into a dictionary.

Returns
All model custom events for dendritic spiking.

Return type
dict

link(ng, automate='all', verbose=False)
Links a NeuronModel to a NeuronGroup. This allows dendrify to automatically handle the initialization of
important simulation parameters.

Parameters

• ng (brian2.NeuronGroup) – A NeuronGroup that was created using a NeuronModel.

• automate (str, optional) – What to automate. Available options: 'all' (default),
'v_rest', 'events'.

• verbose (bool, optional) – If True it prints all the code that was created and run in
the background by dendrify, by default False

property parameters

Merges all compartments’ parameters into a dictionary.

Returns
All model parameters.

Return type
dict

4.5 EphysProperties

class dendrify.ephysproperties.EphysProperties(name=None, length=None, diameter=None, cm=None,
gl=None, r_axial=None, v_rest=None,
scale_factor=1.0, spine_factor=1.0)

Bases: object

A class for calculating various important electrophysiological properties for a single compartment.

Note: An EphysProperties object is automatically created and linked to a Compartment, Soma, or Dendrite
object during the instantiation of the latter.

Parameters

• name (str, optional) – A compartment’s name, by default None

• length (Quantity, optional) – A compartment’s length, by default None

• diameter (Quantity, optional) – A compartment’s diameter, by default None

• cm (Quantity, optional) – Specific capacitance (usually F / cm^2), by default None

• gl (Quantity, optional) – Specific leakage conductance (usually S / cm^2), by default
None

• r_axial (Quantity, optional) – Axial resistance (usually Ohm * cm), by default None

4.5. EphysProperties 19

https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

Dendrify, Release 1.0.9

• v_rest (Quantity, optional) – Resting membrane voltage, by default None

• scale_factor (float, optional) – A global area scale factor, by default 1.0

• spine_factor (float, optional) – A dendritic area scale factor to account for spines,
by default 1.0

Attributes:

area A compartment's surface area (open cylinder) based
on its length and diameter.

capacitance A compartment's absolute capacitance based on its
specific capacitance (cm) and surface area.

g_cylinder The conductance (of coupling currents) passing
through a cylindrical compartment based on its di-
mensions and its axial resistance.

g_leakage A compartment's absolute leakage conductance
based on its specific leakage conductance (gl) and
surface area.

parameters Returns a dictionary of all electrophysiological pa-
rameters.

total_area_factor The total surface are factor.

Methods:

g_couple The conductance (of coupling currents) between the
centers of two adjacent cylindrical compartments,
based on their dimensions and the axial resistance.

property area

A compartment’s surface area (open cylinder) based on its length and diameter.

Returns
A compartment’s surface area

Return type
Quantity

property capacitance

A compartment’s absolute capacitance based on its specific capacitance (cm) and surface area.

Return type
Quantity

static g_couple(comp1, comp2)
The conductance (of coupling currents) between the centers of two adjacent cylindrical compartments,
based on their dimensions and the axial resistance.

Parameters

• comp1 (EphysProperties) – An EphysProperties object

• comp2 (EphysProperties) – An EphysProperties object

Return type
Quantity

20 Chapter 4. Classes

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

Dendrify, Release 1.0.9

property g_cylinder

The conductance (of coupling currents) passing through a cylindrical compartment based on its dimensions
and its axial resistance. To be used when then the total number of compartments is low and the adjacent-
to-soma compartments are highly coupled with the soma.

Return type
Quantity

property g_leakage

A compartment’s absolute leakage conductance based on its specific leakage conductance (gl) and surface
area.

Return type
Quantity

property parameters

Returns a dictionary of all electrophysiological parameters.

Return type
dict

property total_area_factor

The total surface are factor.

Return type
float

4.5. EphysProperties 21

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

Dendrify, Release 1.0.9

22 Chapter 4. Classes

CHAPTER

FIVE

MODEL LIBRARY

Note: Dendrify relies on Brian’s Equations-based approach to define models as systems of first order ordinary differ-
ential equations. For convenience, Dendrify includes a library of default models (see below) however users can also
provide custom model equations.

5.1 Somatic models12

5.1.1 Leaky Integrate-and-Fire

𝐶
𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) + 𝐼

where 𝐶 is the membrane capacitance, 𝑉 the membrane potential, 𝑔𝐿 the leak conductance, 𝐸𝐿 the leak reversal
potential and 𝐼 is the input current. When the firing threshold 𝑉𝜃 is crossed, 𝑉 resets to a fixed value 𝑉𝑟.

5.1.2 Adaptive Integrate-and-Fire

𝐶
𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) − 𝑤 + 𝐼

𝜏𝑤
𝑑𝑤

𝑑𝑡
= 𝑎(𝑉 − 𝐸𝐿) − 𝑤

where 𝑤 is the adaptation variable, 𝑎 the adaptation coupling parameter and 𝑤 is the adaptation time constant. When
the firing threshold 𝑉𝜃 is crossed, 𝑉 resets to a fixed value 𝑉𝑟 and 𝑤 → 𝑤+𝑏, where 𝑏 is the spike-triggered adaptation
current.

1 https://neuronaldynamics.epfl.ch/online/Ch1.S3.html
2 https://neuronaldynamics.epfl.ch/online/Ch6.S1.html

23

https://brian2.readthedocs.io/en/stable/user/equations.html
https://neuronaldynamics.epfl.ch/online/Ch1.S3.html
https://neuronaldynamics.epfl.ch/online/Ch6.S1.html

Dendrify, Release 1.0.9

5.1.3 Adaptive Exponential Integrate-and-Fire

𝐶
𝑑𝑉

𝑑𝑡
= −𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝐿∆𝑇 exp

(︂
𝑉 − 𝑉𝑇

∆𝑇

)︂
− 𝑤 + 𝐼

𝜏𝑤
𝑑𝑤

𝑑𝑡
= 𝑎(𝑉 − 𝐸𝐿) − 𝑤

where ∆𝑇 is the slope factor and 𝑉𝑇 the voltage threshold. When the firing threshold 𝑉𝜃 is crossed, 𝑉 resets to a fixed
value 𝑉𝑟 and 𝑤 → 𝑤 + 𝑏, where 𝑏 is the spike-triggered adaptation current.

5.2 Dendritic models

5.3 Synaptic modelsPage 24, 34

5.3.1 AMPA

𝐼AMPA = 𝑔AMPA(𝐸AMPA − 𝑉)𝑠(𝑡)

𝑑𝑠

𝑑𝑡
=

−𝑠

𝜏 decay
AMPA

where 𝑔AMPA is the AMPA synaptic conductance, 𝑠 the channel state variable, 𝐸AMPA the AMPA reversal potential, 𝑉
the membrane potential and 𝜏 decay

AMPA the AMPA decay time constant. When a pre-synaptic spike arrives 𝑠 → 𝑠 + 1.

5.3.2 AMPA (rise & decay)

𝐼AMPA = 𝑔AMPA(𝐸AMPA − 𝑉)𝑥(𝑡)

𝑑𝑥

𝑑𝑡
=

−𝑥

𝜏 decay
AMPA

+ 𝑠(𝑡)

𝑑𝑠

𝑑𝑡
=

−𝑠

𝜏 rise
AMPA

where 𝑠 and 𝑥 describe the rise and decay kinetics of the channel respectively, 𝜏 rise
AMPA is the AMPA rise time constant

and 𝜏 decay
AMPA is the AMPA decay time constant. When a pre-synaptic spike arrives 𝑠 → 𝑠 + 1.

5.3.3 NMDA

𝐼NMDA = 𝑔NMDA(𝐸NMDA − 𝑉)𝑠(𝑡)𝜎(𝑉)

𝑑𝑠

𝑑𝑡
=

−𝑠

𝜏 decay
NMDA

𝜎(𝑉) =
1

1 +
[Mg2+]

𝑜

𝛽 · exp (−𝛼 (𝑉 − 𝛾))

where 𝑔NMDA is the NMDA synaptic conductance, 𝑠 the channel state variable, 𝐸NMDA the NMDA reversal potential,
𝜏 decay

NMDA the NMDA decay time constant, 𝛽 (mM),𝛼 (mV-1) and 𝛾 (mV) control the magnesium and voltage dependencies
and [Mg2+]o denotes the external magnesium concentration (mM). When a pre-synaptic spike arrives 𝑠 → 𝑠 + 1.

3 https://neuronaldynamics.epfl.ch/online/Ch3.S1.html
4 https://link.springer.com/chapter/10.1007/978-0-387-87708-2_7#Sec1

24 Chapter 5. Model library

https://neuronaldynamics.epfl.ch/online/Ch3.S1.html
https://link.springer.com/chapter/10.1007/978-0-387-87708-2_7#Sec1

Dendrify, Release 1.0.9

5.3.4 References

5.3. Synaptic models?? 25

Dendrify, Release 1.0.9

26 Chapter 5. Model library

CHAPTER

SIX

INDEX

27

Dendrify, Release 1.0.9

28 Chapter 6. Index

CHAPTER

SEVEN

IMPORTANT LITERATURE

Introducing the Dendrify framework for incorporating dendrites to spiking neural networks M Pagkalos, S
Chavlis, P Poirazi DOI: https://doi.org/10.1038/s41467-022-35747-8
Brian 2, an intuitive and efficient neural simulator M Stimberg, R Brette, D FM Goodman DOI: https://doi.org/
10.7554/eLife.47314
Contribution of sublinear and supralinear dendritic integration to neuronal computations A Tran-Van-Minh,
R D Cazé, T Abrahamsson, L Cathala, B Gutkin, D A DiGregorio DOI: https://doi.org/10.3389/fncel.2015.00067
Pyramidal neurons: dendritic structure and synaptic integration N Spruston DOI: https://doi.org/10.1038/
nrn2286
Reduced compartmental models of neocortical pyramidal cells P C Bush, T J Sejnowski DOI : https://doi.org/
10.1016/0165-0270(93)90151-g
Book | Mathematical Foundations of Neuroscience (chapters 1, 2 & 7) G B Ermentrout, D H Terman Publisher’s
website: https://link.springer.com/book/10.1007/978-0-387-87708-2
Brian2CUDA: flexible and efficient simulation of spiking neural network models on GPUs D Alevi, M Stim-
berg, H Sprekeler, K Obermayer, M Augustin DOI: https://doi.org/10.3389/fninf.2022.883700

29

https://doi.org/10.1038/s41467-022-35747-8
https://doi.org/10.7554/eLife.47314
https://doi.org/10.7554/eLife.47314
https://doi.org/10.3389/fncel.2015.00067
https://doi.org/10.1038/nrn2286
https://doi.org/10.1038/nrn2286
https://doi.org/10.1016/0165-0270(93)90151-g
https://doi.org/10.1016/0165-0270(93)90151-g
https://link.springer.com/book/10.1007/978-0-387-87708-2
https://doi.org/10.3389/fninf.2022.883700

Dendrify, Release 1.0.9

30 Chapter 7. Important literature

CHAPTER

EIGHT

RELEASE NOTES

8.1 Version 1.0.8

• Improved documentation.

• Minor improvements.

8.2 Version 1.0.5

• Improved documentation.

• Minor bug fixes.

8.3 Version 1.0.4

• Redesigned documentation page.

• Added more type hints.

• Improved compatibility with older Python versions.

• Minor bug fixes.

31

Dendrify, Release 1.0.9

32 Chapter 8. Release notes

CHAPTER

NINE

CODE OF CONDUCT

9.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to make
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

9.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

9.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

33

Dendrify, Release 1.0.9

9.4 Scope

This Code of Conduct applies within all project spaces, and it also applies when an individual is representing the project
or its community in public spaces. Examples of representing a project or community include using an official project
e-mail address, posting via an official social media account, or acting as an appointed representative at an online or
offline event. Representation of a project may be further defined and clarified by project maintainers.

9.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at mpagkalos93@gmail.com. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

9.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

34 Chapter 9. Code of Conduct

mailto:mpagkalos93@gmail.com
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq

INDEX

A
add_equations() (dendrify.neuronmodel.NeuronModel

method), 17
add_params() (dendrify.neuronmodel.NeuronModel

method), 17
area (dendrify.compartment.Compartment property), 12
area (dendrify.ephysproperties.EphysProperties prop-

erty), 20
as_graph() (dendrify.neuronmodel.NeuronModel

method), 18

C
capacitance (dendrify.compartment.Compartment

property), 12
capacitance (dendrify.ephysproperties.EphysProperties

property), 20
Compartment (class in dendrify.compartment), 11
connect() (dendrify.compartment.Compartment

method), 12

D
Dendrite (class in dendrify.compartment), 15
dspike_properties() (den-

drify.neuronmodel.NeuronModel method),
18

dspikes() (dendrify.compartment.Dendrite method), 15

E
EphysProperties (class in dendrify.ephysproperties),

19
equations (dendrify.compartment.Compartment prop-

erty), 13
equations (dendrify.neuronmodel.NeuronModel prop-

erty), 18
event_actions (dendrify.compartment.Dendrite prop-

erty), 16
event_actions (dendrify.neuronmodel.NeuronModel

property), 18
events (dendrify.compartment.Dendrite property), 16
events (dendrify.neuronmodel.NeuronModel property),

18

G
g_couple() (dendrify.ephysproperties.EphysProperties

static method), 20
g_cylinder (dendrify.ephysproperties.EphysProperties

property), 20
g_leakage (dendrify.compartment.Compartment prop-

erty), 13
g_leakage (dendrify.ephysproperties.EphysProperties

property), 21

L
link() (dendrify.neuronmodel.NeuronModel method),

19

N
NeuronModel (class in dendrify.neuronmodel), 16
noise() (dendrify.compartment.Compartment method),

13

P
parameters (dendrify.compartment.Compartment prop-

erty), 13
parameters (dendrify.ephysproperties.EphysProperties

property), 21
parameters (dendrify.neuronmodel.NeuronModel prop-

erty), 19

S
Soma (class in dendrify.compartment), 14
synapse() (dendrify.compartment.Compartment

method), 13

T
total_area_factor (den-

drify.ephysproperties.EphysProperties prop-
erty), 21

35

	Installation
	Dependencies
	GPU support

	Tutorial
	Examples
	Classes
	Compartment
	Soma
	Dendrite
	NeuronModel
	EphysProperties

	Model library
	Somatic models
	Leaky Integrate-and-Fire
	Adaptive Integrate-and-Fire
	Adaptive Exponential Integrate-and-Fire

	Dendritic models
	Synaptic models
	AMPA
	AMPA (rise & decay)
	NMDA
	References

	Index
	Important literature
	Release notes
	Version 1.0.8
	Version 1.0.5
	Version 1.0.4

	Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Index

